This paper is concerned with multi-modal data fusion (MMDF) under unexpected modality failures in nonlinear non-Gaussian dynamic processes. An efficient framework to tackle this problem is proposed. In particular, a notion termed modality "\emph{usefulness}", which takes a value of 1 or 0, is used for indicating whether the observation of this modality is useful or not. For $n$ modalities involved, $2^n$ combinations of their "\emph{usefulness}" values exist. Each combination defines one hypothetical model of the true data generative process. Then the problem of concern is formalized as a task of nonlinear non-Gaussian state filtering under model uncertainty, which is addressed by a dynamic model averaging (DMA) based particle filter (PF) algorithm. This DMA algorithm employs $2^n$ models, while all models share the same state-transition function and a unique set of particle values. That makes its computational complexity only slightly larger than a single model based PF algorithm, especially for scenarios in which $n$ is small. Experimental results show that the proposed solution outperforms remarkably state-of-the-art methods. Code and data are available at https://github.com/robinlau1981/fusion.


翻译:本文涉及在非线性非Gausian动态进程中出现意外模式失败的多模式数据聚合(MMDF)问题。 提出了解决这一问题的有效框架。 特别是, 一种名为“ emph{ usefility} ” 的模式, 其值值值为1或0, 用于表明对这个模式的观察是否有用。 对于所涉模式, 存在2美元, 其“ emph{ usefility}” 值组合。 每个组合都定义了真实数据基因化进程中的一种假设模型。 然后, 将关注问题正式确定为非线性非Gausian 国家过滤在模型不确定性下的任务, 由基于平均( DMA) 的粒子过滤算法处理。 DMA 算法使用2美元模型, 而所有模型都具有相同的状态过渡功能和独特的粒子值组。 这使得其计算复杂性仅略高于基于单一模型的PFFF算法, 特别是对于以美元为小的情景。 实验结果显示, 所拟议的解决方案已明显超过M81/ ambrod- corrive/ ad data。 rodslus and datasuplus。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
30+阅读 · 2021年2月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
专知会员服务
30+阅读 · 2021年2月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员