Planning for multi-robot teams in complex environments is a challenging problem, especially when these teams must coordinate to accomplish a common objective. In general, optimal solutions to these planning problems are computationally intractable, since the decision space grows exponentially with the number of robots. In this paper, we present a novel approach for multi-robot planning on topological graphs using mixed-integer programming. Central to our approach is the notion of a dynamic topological graph, where edge weights vary dynamically based on the locations of the robots in the graph. We construct this graph using the critical features of the planning problem and the relationships between robots; we then leverage mixed-integer programming to minimize a shared cost that depends on the paths of all robots through the graph. To improve computational tractability, we formulated an objective function with a fully convex relaxation and designed our decision space around eliminating the exponential dependence on the number of robots. We test our approach on a multi-robot reconnaissance scenario, where robots must coordinate to minimize detectability and maximize safety while gathering information. We demonstrate that our approach is able to scale to a series of representative scenarios and is capable of computing optimal coordinated strategic behaviors for autonomous multi-robot teams in seconds.
翻译:在复杂环境中,对于多机器人团队的规划是一个具有挑战性的问题,尤其是当这些团队必须协调以完成共同的目标时。一般来说,这些规划问题的最优解是计算上难以处理的,因为决策空间随机器人数量呈指数增长。在本文中,我们提出了一种新颖的方法来利用混合整数规划在拓扑图上进行多机器人路径规划。我们将动态拓扑图的概念作为核心,其中边缘权重根据机器人在拓扑图中的位置动态变化。我们使用规划问题的关键特征和机器人之间的关系来构建这个图形;然后,我们利用混合整数规划来最小化一个共享成本,该成本取决于所有机器人通过图形的路径。为了提高计算的可行性,我们制定了一种完全凸松弛的目标函数,并设计了我们的决策空间以消除对机器人数量指数依赖的影响。我们在一个多机器人侦查场景中测试了我们的方法,其中机器人必须协调以最小化可检测性和最大化安全性同时收集信息。我们证明了我们的方法能够扩展到一系列代表性场景,并能够计算出自主多机器人团队的最优协调策略行为,计算时间不超过数秒。