This paper addresses the computational challenges of learning strong substitutes demand when given access to a demand (or valuation) oracle. Strong substitutes demand generalises the well-studied gross substitutes demand to a multi-unit setting. Recent work by Baldwin and Klemperer shows that any such demand can be expressed in a natural way as a finite list of weighted bid vectors. A simplified version of this bidding language has been used by the Bank of England. Assuming access to a demand oracle, we provide an algorithm that computes the unique list of weighted bid vectors corresponding to a bidder's demand preferences. In the special case where their demand can be expressed using positive bids only, we have an efficient algorithm that learns this list in linear time. We also show super-polynomial lower bounds on the query complexity of computing the list of bids in the general case where bids may be positive and negative. Our algorithms constitute the first systematic approach for bidders to construct a bid list corresponding to non-trivial demand, allowing them to participate in `product-mix' auctions.
翻译:本文论述在获得需求(或估价)或标准时学习强大的替代品需求的计算挑战。 强大的替代品要求将经过仔细研究的替代品总需求概括为多单元设置。 Baldwin 和 Klempperer最近的工作表明,任何此类需求都可以自然地作为加权投标矢量的有限清单来表达。 英格兰银行已经使用这种投标语言的简化版本。 假设获得需求或标准,我们提供一种算法,计算出与投标人需求偏好相对应的独特加权投标矢量清单。 在只能使用肯定出价来表达其需求的特例中,我们有一个有效的算法,在线性时间里学习这一清单。 我们还展示出在一般情况下计算出价可能是正负的投标列表的查询复杂性上超极性较低。 我们的算法是投标人根据非重价需求来制定投标清单的第一个系统方法,允许他们参加`产品组合'拍卖。