This paper addresses the computational challenges of learning strong substitutes demand when given access to a demand (or valuation) oracle. Strong substitutes demand generalises the well-studied gross substitutes demand to a multi-unit setting. Recent work by Baldwin and Klemperer shows that any such demand can be expressed in a natural way as a finite list of weighted bid vectors. A simplified version of this bidding language has been used by the Bank of England. Assuming access to a demand oracle, we provide an algorithm that computes the unique list of weighted bid vectors corresponding to a bidder's demand preferences. In the special case where their demand can be expressed using positive bids only, we have an efficient algorithm that learns this list in linear time. We also show super-polynomial lower bounds on the query complexity of computing the list of bids in the general case where bids may be positive and negative. Our algorithms constitute the first systematic approach for bidders to construct a bid list corresponding to non-trivial demand, allowing them to participate in `product-mix' auctions.


翻译:本文论述在获得需求(或估价)或标准时学习强大的替代品需求的计算挑战。 强大的替代品要求将经过仔细研究的替代品总需求概括为多单元设置。 Baldwin 和 Klempperer最近的工作表明,任何此类需求都可以自然地作为加权投标矢量的有限清单来表达。 英格兰银行已经使用这种投标语言的简化版本。 假设获得需求或标准,我们提供一种算法,计算出与投标人需求偏好相对应的独特加权投标矢量清单。 在只能使用肯定出价来表达其需求的特例中,我们有一个有效的算法,在线性时间里学习这一清单。 我们还展示出在一般情况下计算出价可能是正负的投标列表的查询复杂性上超极性较低。 我们的算法是投标人根据非重价需求来制定投标清单的第一个系统方法,允许他们参加`产品组合'拍卖。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Model-Free Learning of Safe yet Effective Controllers
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员