As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with relevant images attached. We noticed that current MMEA algorithms all globally adopt the KG-level modality fusion strategies for multi-modal entity representation but ignore the variation in modality preferences for individual entities, hurting the robustness to potential noise involved in modalities (e.g., blurry images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, which dynamically predicts the mutual correlation coefficients among modalities for entity-level feature aggregation. A modal-aware hard entity replay strategy is further proposed for addressing vague entity details. Experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has comparable number of parameters, optimistic speed, and good interpretability. Our code and data will be available soon for evaluation.
翻译:作为实体调整的一个重要变体(EA),多模式实体调整(MMEA)旨在发现不同知识图表(KGs)的相同实体,并附有相关图像。我们注意到,目前的MMEA算法在全球各地都采用KG级模式聚合战略,以代表多模式实体,但忽视了对个别实体模式偏好的不同,损害了对模式所涉潜在噪音(例如模糊图像和关系)的稳健性。在本文中,我们介绍了MEAAAAREU, 元模式混合的多模式实体调整变异器,动态预测实体级特征汇总模式之间的相互关联系数。还进一步提出了处理模糊实体细节的多标准化硬实体重现战略。实验结果表明,我们的模型不仅在多个培训情景上实现了SOTA绩效,包括受监督、不受监督、迭接和低资源,而且还有可比较的参数、乐观速度和良好的解释性。我们的代码和数据将很快可供评估。