Finding optimal adversarial attack strategies is an important topic in reinforcement learning and the Markov decision process. Previous studies usually assume one all-knowing coordinator (attacker) for whom attacking different recipient (victim) agents incurs uniform costs. However, in reality, instead of using one limitless central attacker, the attacks often need to be performed by distributed attack agents. We formulate the problem of performing optimal adversarial agent-to-agent attacks using distributed attack agents, in which we impose distinct cost constraints on each different attacker-victim pair. We propose an optimal method integrating within-step static constrained attack-resource allocation optimization and between-step dynamic programming to achieve the optimal adversarial attack in a multi-agent system. Our numerical results show that the proposed attacks can significantly reduce the rewards received by the attacked agents.
翻译:暂无翻译