Most real-world networks evolve over time. Existing literature proposes models for dynamic networks that are either unlabeled or assumed to have a single membership structure. On the other hand, a new family of Mixed Membership Stochastic Block Models (MMSBM) allows to model static labeled networks under the assumption of mixed-membership clustering. In this work, we propose to extend this later class of models to infer dynamic labeled networks under a mixed membership assumption. Our approach takes the form of a temporal prior on the model's parameters. It relies on the single assumption that dynamics are not abrupt. We show that our method significantly differs from existing approaches, and allows to model more complex systems --dynamic labeled networks. We demonstrate the robustness of our method with several experiments on both synthetic and real-world datasets. A key interest of our approach is that it needs very few training data to yield good results. The performance gain under challenging conditions broadens the variety of possible applications of automated learning tools --as in social sciences, which comprise many fields where small datasets are a major obstacle to the introduction of machine learning methods.
翻译:大多数真实网络随时间演变,现有文献提出的动态网络模型要么是未标记的,要么是假定具有单一成员结构的。另一方面,一种新的混合成员随机块模型(MMSBM)家族允许在混合成员聚类的假设下对静态标记网络进行建模。在这项工作中,我们建议将后一类模型扩展到在混合成员假设下推断动态标记网络。我们的方法采用模型参数的时间先验思想。它依赖于一个假设,即动态不是突然的。我们证明了我们的方法与现有方法显着不同,并允许模拟更复杂的系统——动态标记网络。我们通过多个合成和真实数据集上的实验展示了我们方法的鲁棒性。我们方法的一个关键优势是可以利用很少的训练数据就能得出好的结果。在具有挑战性的条件下的性能提升扩大了自动学习工具的各种潜在应用领域,如社会科学领域,其中许多领域中小数据集是引入机器学习方法的主要障碍。