This paper considers adaptive, minimax estimation of a quadratic functional in a nonparametric instrumental variables (NPIV) model, which is an important problem in optimal estimation of a nonlinear functional of an ill-posed inverse regression with an unknown operator. We first show that a leave-one-out, sieve NPIV estimator of the quadratic functional can attain a convergence rate that coincides with the lower bound previously derived in Chen and Christensen [2018]. The minimax rate is achieved by the optimal choice of the sieve dimension (a key tuning parameter) that depends on the smoothness of the NPIV function and the degree of ill-posedness, both are unknown in practice. We next propose a Lepski-type data-driven choice of the key sieve dimension adaptive to the unknown NPIV model features. The adaptive estimator of the quadratic functional is shown to attain the minimax optimal rate in the severely ill-posed case and in the regular mildly ill-posed case, but up to a multiplicative $\sqrt{\log n}$ factor in the irregular mildly ill-posed case.
翻译:本文考虑了非参数工具变量(NPIV)模型中一种二次功能的适应性、微缩估计值,这是最佳估计非线性功能与未知操作员之间不正确反向回归的一个重要问题。我们首先表明,四边功能的静脉冲 NPIV 估计仪可以达到与先前在Chen 和Christensen [2018] 中得出的较低约束值相吻合的趋同率。 小型峰值的实现方式是最佳选择储量(一个关键调控参数),这取决于 NPIV 功能的顺利性和不正确沉积程度,两者在实践中都并不为人所知。 我们接下来建议对关键储量进行莱普斯基型数据驱动选择,以适应未知 NPIV 模型特征。 夸度功能的适应性估计仪显示,在严重错误的情况下和正常的轻度情况中,达到微缩峰值最佳率(一个关键调控参数),但最高可达到不规则型 $\ qrtracal npos 系数。