The efficiency of Markov Chain Monte Carlo (MCMC) depends on how the underlying geometry of the problem is taken into account. For distributions with strongly varying curvature, Riemannian metrics help in efficient exploration of the target distribution. Unfortunately, they have significant computational overhead due to e.g. repeated inversion of the metric tensor, and current geometric MCMC methods using the Fisher information matrix to induce the manifold are in practice slow. We propose a new alternative Riemannian metric for MCMC, by embedding the target distribution into a higher-dimensional Euclidean space as a Monge patch and using the induced metric determined by direct geometric reasoning. Our metric only requires first-order gradient information and has fast inverse and determinants, and allows reducing the computational complexity of individual iterations from cubic to quadratic in the problem dimensionality. We demonstrate how Lagrangian Monte Carlo in this metric efficiently explores the target distributions.
翻译:Markov 链条蒙特卡洛(MCMC)的效率取决于如何考虑到这一问题的基本几何特征。对于曲度差异很大的分布,里曼尼指标有助于有效探索目标分布。不幸的是,由于一再颠倒指标强力,以及目前利用渔业信息矩阵诱发元件的几何MC方法,它们具有重要的计算间接费用。我们提议为MCM提出一个新的里曼尼指标,将目标分布作为蒙古语的更高维面的欧西里德空间,并使用直接几何推理确定的引导指标。我们的衡量标准仅需要一级梯度信息,具有快速反向和决定因素,可以减少问题维度从立方到四面的单个迭的计算复杂性。我们展示了Lagrangian Monte Carlo在这个指标中如何有效地探索目标分布。