To solve Math Word Problems, human students leverage diverse reasoning logic that reaches different possible equation solutions. However, the mainstream sequence-to-sequence approach of automatic solvers aims to decode a fixed solution equation supervised by human annotation. In this paper, we propose a controlled equation generation solver by leveraging a set of control codes to guide the model to consider certain reasoning logic and decode the corresponding equations expressions transformed from the human reference. The empirical results suggest that our method universally improves the performance on single-unknown (Math23K) and multiple-unknown (DRAW1K, HMWP) benchmarks, with substantial improvements up to 13.2% accuracy on the challenging multiple-unknown datasets.
翻译:为解决数学文字问题,人类学生利用多种推理逻辑,达成不同的方程式解决方案。然而,自动解答者的主流序列到序列法旨在解码由人类注解监管的固定方程式。在本文中,我们提出一套受控方程式生成解码,办法是利用一套控制方程式来指导模型,以考虑某些推理逻辑,并解码由人类参考法转变的对应方程式。经验结果显示,我们的方法普遍改善了单未知(Math23K)和多未知(DRAW1K, HMWP)基准的性能,挑战性多未知数据集的精确度大幅提高至13.2%。