Land remote sensing analysis is a crucial research in earth science. In this work, we focus on a challenging task of land analysis, i.e., automatic extraction of traffic roads from remote sensing data, which has widespread applications in urban development and expansion estimation. Nevertheless, conventional methods either only utilized the limited information of aerial images, or simply fused multimodal information (e.g., vehicle trajectories), thus cannot well recognize unconstrained roads. To facilitate this problem, we introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet), which fully benefits the complementary different modal data (i.e., aerial images and crowdsourced trajectories). Specifically, CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement. In particular, the complementary information of each modality is comprehensively extracted and dynamically propagated to enhance the representation of another modality. Extensive experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction benefiting from blending different modal data, either using image and trajectory data or image and Lidar data. From the experimental results, we observe that the proposed approach outperforms current state-of-the-art methods by large margins.Our source code is resealed on the project page \url{http://lingboliu.com/multimodal road extraction.html}
翻译:陆地遥感分析是地球科学中一项至关重要的研究。在这项工作中,我们侧重于一项具有挑战性的土地分析任务,即从遥感数据中自动提取交通道路,这在城市发展和扩展估计中具有广泛应用性;然而,常规方法要么只是利用航空图像的有限信息,要么仅仅是整合多式信息(如车辆轨迹),因此无法很好地识别不受限制的道路。为了便利这一问题,我们引入了一个新型神经网络框架,称为跨模式消息传输网络(CMMPNet),它充分有利于互补的不同模式数据(即航空图像和众源轨迹)。具体地说,CMMPNet由两个深度的自动编码器组成,用于具体模式代表学习,或者只是一个定制的双重增强模块(如车辆轨迹),因此无法完全识别出不受限制的道路。为了便利这一问题,我们引入了一个名为跨模式信息传输网络(CMMPNet)的新颖的神经网络,充分有利于补充不同的模式数据(即空中图像和移动轨迹)的可靠道路提取,我们通过模拟图象图象和图象模型模型和图象模型项目,将不同的轨道图象和图象转换成大图象项目。