Many problems in Discrete and Computational Geometry deal with simple polygons or polygonal regions. Many algorithms and data-structures perform considerably faster, if the underlying polygonal region has low local complexity. One obstacle to make this intuition rigorous, is the lack of a formal definition of local complexity. Here, we give two possible definitions and show how they are related in a combinatorial sense. We say that a polygon $P$ has point visibility width $w=pvw$, if there is no point $q\in P$ that sees more than $w$ reflex vertices. We say that a polygon $P$ has chord visibility width $w=cvw $, if there is no chord $c=\textrm{seg}(a,b)\subset P$ that sees more than w reflex vertices. We show that \[ cvw \leq pvw ^{O( pvw )},\] for any simple polygon. Furthermore, we show that there exists a simple polygon with \[ cvw \geq 2^{\Omega( pvw )}.\]
翻译:discrete 和 computation 几何中的许多问题涉及简单的多边形或多边形区域。 许多算法和数据结构的运行速度要快得多, 如果基础多边形区域当地复杂程度较低。 使这种直觉严谨的一个障碍是缺乏对本地复杂程度的正式定义。 在这里, 我们给出两个可能的定义, 并显示它们在组合意义上的关系 。 我们说, 多边形$P$具有点可见度宽 $w=pw$, 如果没有点 $\ in P$, 可以看到超过 $w$ 反反射的脊椎。 此外, 我们说, 多边形$P$ 具有弦可见度宽 $w=cvw $, 如果没有cord ${textrm{seg} (a, b)\ subssetset p$, 其值比反反射的脊椎值要高。 我们表示, 任何简单的多边形的[ cvw\leq pvw( pvww)}}\ 。 此外, 我们表示存在一个简单的多边形的pq 。 [q\\\ cq\ cq]\ c=\ cq]\ cq_\\\\\\\\\\\\\\\ g geges