An important task when working with terrain models is computing viewsheds: the parts of the terrain visible from a given viewpoint. When the terrain is modeled as a polyhedral terrain, the viewshed is composed of the union of all the triangle parts that are visible from the viewpoint. The complexity of a viewshed can vary significantly, from constant to quadratic in the number of terrain vertices, depending on the terrain topography and the viewpoint position. In this work we study a new topographic attribute, the \emph{prickliness}, that measures the number of local maxima in a terrain from all possible perspectives. We show that the prickliness effectively captures the potential of 2.5D terrains to have high complexity viewsheds, and we present near-optimal algorithms to compute the prickliness of 1.5D and 2.5D terrains. We also report on some experiments relating the prickliness of real word 2.5D terrains to the size of the terrains and to their viewshed complexity.


翻译:在与地形模型合作时,一项重要的任务就是计算地貌图景:从特定角度可见的地形部分。当地形以多元地形为模型时,景色由所有三角地块的组合组成,从这一角度可见。一个景色的复杂程度可能有很大差异,从地形脊椎的常态到二次,取决于地形地形地形和视角位置。在这项工作中,我们从各种可能的角度研究一个新的地形特征,即: 地貌特征,从各种可能的角度衡量地形中本地峰值的数量。我们表明,阴刺性有效地捕捉了2.5D地形具有高度复杂景色的潜力,我们提出了近乎最佳的算法,以计算1.5D和2.5D地形的模糊性。我们还报告了一些将实际单词2.5D地形与地形大小及其深层复杂性相联起来的刺痛性实验。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月28日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2019年11月14日
Area Attention
Arxiv
5+阅读 · 2019年2月5日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员