A well studied problem in algebraic complexity theory is the determination of the complexity of problems relying on evaluations of bilinear maps. One measure of the complexity of a bilinear map (or 3-tensor) is the optimal number of non-scalar multiplications required to evaluate it. This quantity is also described as its tensor rank, which is the smallest number of rank one matrices whose span contains its first slice space. In this paper we derive upper bounds on the tensor ranks of certain classes of $3$-tensors and give explicit constructions of sets of rank one matrices containing their first slice spaces. We also show how these results can be applied in coding theory to derive upper bounds on the tensor rank of some rank-metric codes. In particular, we compute the tensor rank of some families of $\mathbb{F}_{q^m}$-linear codes and we show that they are extremal with respect to Kruskal's tensor rank bound.


翻译:测代复杂度理论中研究周密的一个问题是如何确定依赖双线地图评估的问题的复杂性。 衡量双线地图( 或 3- tensor) 复杂性的一个尺度是评估它所需的非天平乘数的最佳数量。 这个数量也被称为它的 Exor 级, 也就是其范围包含第一个切片空间的最小的一级矩阵的 数级数。 在本文中, 我们从某些等级的 $$- $- q ⁇ % $- linear 代码中得出上层界限, 并给出包含其第一个切片空间的一级矩阵序列的清晰构造 。 我们还展示这些结果如何应用于编码理论, 以得出某些分级码的高端界限 。 特别是, 我们计算了某些家族的 $\ mathb{ F\ q ⁇ } $- linear 代码的 等号, 并且我们显示它们对于 Kruskal 的 shall 约束值来说是极端的 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning to Importance Sample in Primary Sample Space
Arxiv
6+阅读 · 2018年4月24日
Arxiv
5+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
14+阅读 · 2020年12月17日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning to Importance Sample in Primary Sample Space
Arxiv
6+阅读 · 2018年4月24日
Arxiv
5+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员