The Acceptance Probability Estimation Problem (APEP) is to additively approximate the acceptance probability of a Boolean circuit. This problem admits a probabilistic approximation scheme. A central question is whether we can design a pseudodeterministic approximation algorithm for this problem: a probabilistic polynomial-time algorithm that outputs a canonical approximation with high probability. Recently, it was shown that such an algorithm would imply that every approximation algorithm can be made pseudodeterministic (Dixon, Pavan, Vinodchandran; ITCS 2021). The main conceptual contribution of this work is to establish that the existence of a pseudodeterministic algorithm for APEP is fundamentally connected to the relationship between probabilistic promise classes and the corresponding standard complexity classes. In particular, we show the following equivalence: every promise problem in PromiseBPP has a solution in BPP if and only if APEP has a pseudodeterministic algorithm. Based on this intuition, we show that pseudodeterministic algorithms for APEP can shed light on a few central topics in complexity theory such as circuit lowerbounds, probabilistic hierarchy theorems, and multi-pseudodeterminism.
翻译:验收概率估计问题(APEP) 是要对接受波莱安电路的接受概率进行补充性估计。 这个问题承认了一种概率近似近似法。 一个中心问题是,我们是否能够设计出一种假的确定性近似算法来解决这个问题:一种概率性多米时算法,它能以高概率输出一种罐头近似值。 最近,这种算法表明,这种算法将意味着每一种近似算法都可以做假的确定性算法(Dixon, Pavan, Vinodchandran; ITSS 2021) 。 这项工作的主要概念贡献是确定APEP的假的确定性算法的存在与概率性许诺类别和相应的标准复杂类别之间的关系有着根本的联系。 特别是,我们展示了以下等等等等等等等同性:MoureBPPP的每一个许诺问题只要APEP有假的确定性算法,只有APEP有假的假的算法。 基于这种直觉,我们证明APEPEP的假的确定性算法可以揭示一些核心专题,例如电路下定式、准性等级和多度等级。