Tensor models play an increasingly prominent role in many fields, notably in machine learning. In several applications of such models, such as community detection, topic modeling and Gaussian mixture learning, one must estimate a low-rank signal from a noisy tensor. Hence, understanding the fundamental limits and the attainable performance of estimators of that signal inevitably calls for the study of random tensors. Substantial progress has been achieved on this subject thanks to recent efforts, under the assumption that the tensor dimensions grow large. Yet, some of the most significant among these results--in particular, a precise characterization of the abrupt phase transition (in terms of signal-to-noise ratio) that governs the performance of the maximum likelihood (ML) estimator of a symmetric rank-one model with Gaussian noise--were derived on the basis of statistical physics ideas, which are not easily accessible to non-experts. In this work, we develop a sharply distinct approach, relying instead on standard but powerful tools brought by years of advances in random matrix theory. The key idea is to study the spectra of random matrices arising from contractions of a given random tensor. We show how this gives access to spectral properties of the random tensor itself. In the specific case of a symmetric rank-one model with Gaussian noise, our technique yields a hitherto unknown characterization of the local maximum of the ML problem that is global above the phase transition threshold. This characterization is in terms of a fixed-point equation satisfied by a formula that had only been previously obtained via statistical physics methods. Moreover, our analysis sheds light on certain properties of the landscape of the ML problem in the large-dimensional setting. Our approach is versatile and can be extended to other models, such as asymmetric, non-Gaussian and higher-order ones.


翻译:在许多领域,尤其是机器学习领域,电锯模型发挥着日益突出的作用。在诸如社区探测、主题模型和高斯混合学习等若干应用中,必须从一个吵闹的电压中估计低声信号。因此,了解该信号估计者的基本限度和可达到的性能必然要求随机电压研究。由于最近的努力,在假定电压值大幅增长的假设下,在这个问题上已经取得了显著进展。然而,在这些结果中,一些最显著的直径直径直径直径直径直径直的模型,特别是精确描述突然的阶段过渡(信号至噪音平面平面平面平面平面平面平面平面平面比)的特征,以调节一个最大可能性(ML)的信号信号信号信号信号。因此,根据统计物理思想,高斯的测距平面平面平面模型的性能,非专家难以轻易地了解。在这项工作中,我们开发了一种截然不同的方法,而不是依靠多年的随机矩阵理论带来的标准但有力的工具。关键的想法是研究一个随机矩阵模型的光谱矩阵模型,而这是从甚高距平面平面平面平面平面平面平面平面平面平面平面分析本身,我们的一个例子。我们把一个特定的直压直路路路段平面平面平面平面平面平立立了。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
4+阅读 · 2019年5月8日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Row-clustering of a Point Process-valued Matrix
Arxiv
0+阅读 · 2021年10月4日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月30日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
已删除
将门创投
4+阅读 · 2019年5月8日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员