Predicting the number of defects in a project is critical for project test managers to allocate budget, resources, and schedule for testing, support and maintenance efforts. Software Defect Prediction models predict the number of defects in given projects after training the model with historical defect related information. The majority of defect prediction studies focused on predicting defect-prone modules from methods, and class-level static information, whereas this study predicts defects from project-level information based on a cross-company project dataset. This study utilizes software sizing metrics, effort metrics, and defect density information, and focuses on developing defect prediction models that apply various machine learning algorithms. One notable issue in existing defect prediction studies is the lack of transparency in the developed models. Consequently, the explain-ability of the developed model has been demonstrated using the state-of-the-art post-hoc model-agnostic method called Shapley Additive exPlanations (SHAP). Finally, important features for predicting defects from cross-company project information were identified.
翻译:暂无翻译