We extend previous results on covert communication over the additive white Gaussian noise channel to two other types of additive noise channels. The first is the Gaussian channel with memory, where the noise sequence is a Gaussian vector with an arbitrary invertible covariance matrix. We show that the fundamental limit for covert communication over such a channel is the same as over the channel with white, i.e., memoryless, Gaussian noise. The second type of channel we consider is one with memoryless generalized Gaussian noise. For such a channel we prove a general upper bound on the dominant term in the maximum number of nats that can be covertly communicated over n channel uses. When the shape parameter p of the generalized Gaussian noise distribution is in the interval (0, 1], we also prove a matching lower bound.
翻译:----
两种添加噪声信道上的隐秘通信
我们将之前关于添加白噪声信道的隐秘通信结果扩展到另外两种添加噪声信道。第一个是带有记忆的高斯信道,其中的噪声序列是具有任意可逆协方差矩阵的高斯向量。我们证明了在这种信道上的隐秘通信的基本极限与白色高斯噪声信道的相同。第二种信道则是具有无记忆广义高斯噪声的信道。对于这样的信道,我们证明了在n个信道使用上可隐秘传输的自然对数的最大数量的占优项的一般上界。当广义高斯噪声分布的形状参数p在区间(0,1]内时,我们还证明了一个相匹配的下界。