Despite significant advances in image anomaly detection and segmentation, few methods use 3D information. We utilize a recently introduced 3D anomaly detection dataset to evaluate whether or not using 3D information is a lost opportunity. First, we present a surprising finding: standard color-only methods outperform all current methods that are explicitly designed to exploit 3D information. This is counter-intuitive as even a simple inspection of the dataset shows that color-only methods are insufficient for images containing geometric anomalies. This motivates the question: how can anomaly detection methods effectively use 3D information? We investigate a range of shape representations including hand-crafted and deep-learning-based; we demonstrate that rotation invariance plays the leading role in the performance. We uncover a simple 3D-only method that beats all recent approaches while not using deep learning, external pre-training datasets, or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with color-based features, significantly outperforming previous state-of-the-art. Our method, dubbed BTF (Back to the Feature) achieves pixel-wise ROCAUC: 99.3% and PRO: 96.4% on MVTec 3D-AD.
翻译:尽管在图像异常探测和分割方面取得了显著进步,但很少方法使用 3D 信息。 我们使用最近推出的 3D 异常探测数据集来评估3D 信息是否丢失了机会。 首先, 我们提出一个令人惊讶的发现: 标准色单方法优于当前所有明确设计用于3D信息的方法。 这是反直觉的, 甚至简单的对数据集的检查表明, 包含几何异常的图像中, 仅色单方法是不够的。 这促使问题: 异常检测方法如何有效使用 3D 信息? 我们调查一系列形状表现, 包括手制和深层学习基础; 我们显示, 轮用在性能中扮演着主导角色。 我们发现了一个简单的 3D 仅使用的方法, 超越了所有最近的方法, 而没有使用深层学习、 外部培训前数据集或颜色信息。 由于仅色分解方法无法检测含有色和文字异常的图像。 我们把它与基于颜色的特征结合起来, 大大超过先前的状态信息 。 我们的方法, 调 BTF( Back to the Fetaryal) 和 PRO3D D.