Detecting anomalies is one fundamental aspect of a safety-critical software system, however, it remains a long-standing problem. Numerous branches of works have been proposed to alleviate the complication and have demonstrated their efficiencies. In particular, self-supervised learning based methods are spurring interest due to their capability of learning diverse representations without additional labels. Among self-supervised learning tactics, contrastive learning is one specific framework validating their superiority in various fields, including anomaly detection. However, the primary objective of contrastive learning is to learn task-agnostic features without any labels, which is not entirely suited to discern anomalies. In this paper, we propose a task-specific variant of contrastive learning named masked contrastive learning, which is more befitted for anomaly detection. Moreover, we propose a new inference method dubbed self-ensemble inference that further boosts performance by leveraging the ability learned through auxiliary self-supervision tasks. By combining our models, we can outperform previous state-of-the-art methods by a significant margin on various benchmark datasets.
翻译:发现异常现象是安全关键软件系统的一个基本基本方面,然而,它仍然是一个长期存在的问题。许多工作分支已经提出来缓解复杂情况,并展示了效率。特别是,自我监督的学习方法因其学习多种表现形式的能力而引起兴趣,而没有额外的标签。在自我监督的学习策略中,对比学习是验证其在各个领域优势的一个具体框架,包括异常现象的检测。但是,对比学习的主要目的是在没有完全适合辨别异常情况的任何标签的情况下学习任务机密特征。在本文中,我们提出了一种特定任务化学习的变式,即称为遮蔽式对比学习,更适合辨别异常现象。此外,我们提出了一种新的推论方法,这种推论是自共性推论,它通过辅助性自我监督任务来利用所学到的能力,进一步提升业绩。通过结合我们的模型,我们可以通过在各种基准数据集上显著的间隔,超越以往的状态方法。