In this paper, we investigate the performances of tunable quantum neural networks in the Quantum Probably Approximately Correct (QPAC) learning framework. Tunable neural networks are quantum circuits made of multi-controlled X gates. By tuning the set of controls these circuits are able to approximate any Boolean functions. This architecture is particularly suited to be used in the QPAC-learning framework as it can handle the superposition produced by the oracle. In order to tune the network so that it can approximate a target concept, we have devised and implemented an algorithm based on amplitude amplification. The numerical results show that this approach can efficiently learn concepts from a simple class.
翻译:暂无翻译