In this paper, we establish a high-dimensional CLT for the sample mean of $p$-dimensional spatial data observed over irregularly spaced sampling sites in $\mathbb{R}^d$, allowing the dimension $p$ to be much larger than the sample size $n$. We adopt a stochastic sampling scheme that can generate irregularly spaced sampling sites in a flexible manner and include both pure increasing domain and mixed increasing domain frameworks. To facilitate statistical inference, we develop the spatially dependent wild bootstrap (SDWB) and justify its asymptotic validity in high dimensions by deriving error bounds that hold almost surely conditionally on the stochastic sampling sites. Our dependence conditions on the underlying random field cover a wide class of random fields such as Gaussian random fields and continuous autoregressive moving average random fields. Through numerical simulations and a real data analysis, we demonstrate the usefulness of our bootstrap-based inference in several applications, including joint confidence interval construction for high-dimensional spatial data and change-point detection for spatio-temporal data.
翻译:在本文中,我们为以$mathb{R ⁇ d$美元在不定期间距采样点上观测到的以美元为单位的空间数据样本平均值建立了一个高维CLT,允许维度美元大大大于样本大小,我们采取了一种随机采样办法,可以灵活地生成不定期间距采样点,包括纯增加的域和混合增加的域框架。为了便于统计推断,我们开发了空间依赖的野靴(SDWB),并通过得出几乎肯定以随机采样点为条件的误差界限来证明其在高维度上的无症状有效性。我们对基础随机场的依赖性条件覆盖了广泛的随机场,例如高斯随机场和连续自动递增平均随机场。通过数字模拟和真实的数据分析,我们在若干应用中展示了我们以靴带为基础的推断的有用性,其中包括对高度空间数据进行联合信任间隔和对空间瞬间数据进行改变点探测。