We consider time-harmonic Maxwell's equations set in an heterogeneous medium with perfectly conducting boundary conditions. Given a divergence-free right-hand side lying in $L^2$, we provide a frequency-explicit approximability estimate measuring the difference between the corresponding solution and its best approximation by high-order N\'ed\'elec finite elements. Such an approximability estimate is crucial in both the a priori and a posteriori error analysis of finite element discretizations of Maxwell's equations, but the derivation is not trivial. Indeed, it is hard to take advantage of high-order polynomials given that the right-hand side only exhibits $L^2$ regularity. We proceed in line with previously obtained results for the simpler setting of the scalar Helmholtz equation, and propose a regularity splitting of the solution. In turn, this splitting yields sharp approximability estimates generalizing known results for the scalar Helmoltz equation and showing the interest of high-order methods.


翻译:我们认为时间- 调和 Maxwell 的方程式设置在一个具有完美运行边界条件的多元介质中。 鉴于无差异的右手边以2美元为单位, 我们提供一种频率的可理解性估计值, 测量相应的解决方案与其以高序 N\'ed\'elec 限定元素最接近值之间的差异。 这种近似性估计值在对 Maxwell 方程式的有限元素分解值的先验和后验错误分析中都至关重要, 但衍生值并非微不足道。 事实上, 很难利用高序的多义方程式, 因为右侧只显示2美元为常规值。 我们遵循先前获得的结果, 更简单的设定 selmholtz 方程式, 并提出解决方案的定期分割 。 反过来, 这种分裂产生惊人的相容性估计值, 概括了已知的 scalar Helmoltz 方程式结果, 并展示了高序方法的兴趣 。

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年6月30日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员