In this paper, we derive new, nearly optimal bounds for the Gaussian approximation to scaled averages of $n$ independent high-dimensional centered random vectors $X_1,\dots,X_n$ over the class of rectangles in the case when the covariance matrix of the scaled average is non-degenerate. In the case of bounded $X_i$'s, the implied bound for the Kolmogorov distance between the distribution of the scaled average and the Gaussian vector takes the form $$C (B^2_n \log^3 d/n)^{1/2} \log n,$$ where $d$ is the dimension of the vectors and $B_n$ is a uniform envelope constant on components of $X_i$'s. This bound is sharp in terms of $d$ and $B_n$, and is nearly (up to $\log n$) sharp in terms of the sample size $n$. In addition, we show that similar bounds hold for the multiplier and empirical bootstrap approximations. Moreover, we establish bounds that allow for unbounded $X_i$'s, formulated solely in terms of moments of $X_i$'s. Finally, we demonstrate that the bounds can be further improved in some special smooth and zero-skewness cases.
翻译:在本文中, 我们为高斯近似得出新的、 近乎最佳的界限, 在比例平均值的共差矩阵为非脱产值的情况下, 当比例平均值的共差矩阵为非脱产值时, 高斯近似得出新的、 近似最佳的界限, 在矩形类中独立的高维中心随机矢量的折叠平均值为 $n $x_ 1,\ dots, X_ n$是 美元, 当比例平均值的共差矩阵为非脱产值时, 当比例平均值的共差矩阵为 $x_ i 美元时, 则Kolmogorov 在比例平均值分布和高斯矢量矢量之间, 隐含的Kolmogorov 距离为 美元( 至 $n 美元) 。 此外, 我们显示, 类似的约束值为 倍数和 实战利值的恒定值 。 此外, 最终, 我们确定, 以 美元 平滑度 平整 的 条件 允许 进一步 。