The task of ranking individuals or teams, based on a set of comparisons between pairs, arises in various contexts, including sporting competitions and the analysis of dominance hierarchies among animals and humans. Given data on which competitors beat which others, the challenge is to rank the competitors from best to worst. Here we study the problem of computing rankings when there are multiple, potentially conflicting modes of comparison, such as multiple types of dominance behaviors among animals. We assume that we do not know a priori what information each behavior conveys about the ranking, or even whether they convey any information at all. Nonetheless we show that it is possible to compute a ranking in this situation and present a fast method for doing so, based on a combination of an expectation-maximization algorithm and a modified Bradley-Terry model. We give a selection of example applications to both animal and human competition.
翻译:基于对夫妇之间一系列比较的排名个人或团队的任务,产生于各种背景,包括体育竞赛和对动物和人类中支配地位等级的分析。根据有关竞争者击败其他竞争者的数据,挑战在于将竞争者从最坏的排到最坏的排到最坏的排到第一位。我们在这里研究在有多种可能相互冲突的比较模式时计算排名的问题,例如动物之间多种类型的支配地位行为。我们假设我们不知道一种先验性信息,即每一种行为传递的排名信息,甚至它们是否传递任何信息。然而,我们表明,在这种形势下可以计算排名,并基于预期-最大化算法和修改的布拉德利-泰瑞模式的组合,提出一种快速的方法。我们选择了动物和人类竞争的范例应用。