In observational studies, covariate imbalance generates confounding, resulting in biased outcome comparisons. Although propensity score-based weighting approaches facilitate unconfounded group comparisons for implicit target populations, existing techniques may not directly or efficiently analyze multiple studies with multiple groups, provide generalizable results for the larger population, or deliver precise inferences for various estimands with censored survival outcomes. We construct generalized balancing weights and realistic target populations that incorporate researcher-specified natural population attributes and synthesize information by appropriately compensating for over- or under-represented groups to achieve covariate balance. The concordant weights are agnostic to specific estimators, estimands, and outcomes because they maximize the effective sample size (ESS) to deliver precise inferences. To identify the concordant population, theoretical results identify the global maximum of ESS for a conditional target density. Simulation studies and descriptive comparisons of glioblastoma outcomes of racial groups in multiple TCGA studies demonstrate the strategy's practical advantages. Unlike existing weighting techniques, the proposed concordant target population revealed a drastically different result: Blacks were more vulnerable and endured significantly worse prognoses; Asians had the best outcomes with a median OS of 1,024 (SE: 15.2) days, compared to 384 (SE: 1.2) and 329 (SE: 19.7) days for Whites and Blacks, respectively.
翻译:在观察研究中,共变不平衡造成混乱,导致结果比较偏差。虽然基于偏差的分分分加权法有助于对隐含目标人口进行无根据的群体比较,但现有技术可能不会直接或有效地直接或有效地分析与多个群体进行的多重研究,为较大人口提供可概括的结果,或为各种估计值提供精确的推论,同时对生存结果进行严格审查。我们构建了普遍平衡的权重和现实的目标人口,将研究人员指定的自然人口特征纳入其中,并通过适当补偿代表过多或代表不足的群体来综合信息,从而实现共变平衡。与现有的加权技术不同,拟议一致目标人口对具体的估计、估计和结果具有高度差异,因为它们最大限度地扩大了有效抽样规模(ESS),以提供准确的推断。为了确定相近人口,理论结果确定了ESSE的有条件目标密度的全球最高值。在多项TCGA研究中,模拟和描述性比较了种族群体基因粘结结果,显示了战略的实际优势。与现有的加权技术不同,拟议一致的目标人口显示出了一种截然不同的结果:黑人和黑人的中间值分别为19天和12天(BES的中间值分别为15天和12天)。