We introduce an algorithm for active function approximation based on nearest neighbor regression. Our Active Nearest Neighbor Regressor (ANNR) relies on the Voronoi-Delaunay framework from computational geometry to subdivide the space into cells with constant estimated function value and select novel query points in a way that takes the geometry of the function graph into account. We consider the recent state-of-the-art active function approximator called DEFER, which is based on incremental rectangular partitioning of the space, as the main baseline. The ANNR addresses a number of limitations that arise from the space subdivision strategy used in DEFER. We provide a computationally efficient implementation of our method, as well as theoretical halting guarantees. Empirical results show that ANNR outperforms the baseline for both closed-form functions and real-world examples, such as gravitational wave parameter inference and exploration of the latent space of a generative model.
翻译:我们引入了基于近邻回归的主动功能近似算法。 我们的主动近邻回归者(ANNR)依靠Voranoi-Delaunay框架,从计算几何学到将空间分向具有恒定估计函数值的单元格进行亚化,并选择新的查询点,以考虑到函数图的几何值。 我们认为最近的以空间递增矩形分隔为基础的最先进的主动函数近似值为DEFER(DEFER)是主要基线。 ANNR解决了在DEFER中使用的空间子配置战略产生的一些限制。 我们提供了对方法的计算高效实施以及理论抑制保证。 经验性结果显示, ANNR超越了闭式函数和真实世界实例的基线, 例如引力波参数和对基因模型潜在空间的探索。