On embedded processors that are increasingly equipped with multiple CPU cores, static hardware partitioning is an established means of consolidating and isolating workloads onto single chips. This architectural pattern is suitable for mixed-criticality workloads that need to satisfy both, real-time and safety requirements, given suitable hardware properties. In this work, we focus on exploiting contemporary virtualisation mechanisms to achieve freedom from interference respectively isolation between workloads. Possibilities to achieve temporal and spatial isolation-while maintaining real-time capabilities-include statically partitioning resources, avoiding the sharing of devices, and ascertaining zero interventions of superordinate control structures. This eliminates overhead due to hardware partitioning, but implies certain hardware capabilities that are not yet fully implemented in contemporary standard systems. To address such hardware limitations, the customisable and configurable RISC-V instruction set architecture offers the possibility of swift, unrestricted modifications. We present findings on the current RISC-V specification and its implementations that necessitate interventions of superordinate control structures. We identify numerous issues adverse to implementing our goal of achieving zero interventions respectively zero overhead: On the design level, and especially with regards to handling interrupts. Based on micro-benchmark measurements, we discuss the implications of our findings, and argue how they can provide a basis for future extensions and improvements of the RISC-V architecture.


翻译:在日益配备多CPU核心的嵌入式处理器上,静态硬件分割是将工作量合并和隔离于单一芯片的固定手段。这种建筑型态适用于需要同时满足实时和安全要求的混合临界工作量,考虑到适当的硬件特性。在这项工作中,我们侧重于利用当代虚拟化机制,分别实现工作量之间互不干扰的自由。我们提出了实现时间和空间隔离的可能性,同时保持实时隔离能力,包括静态分割资源,避免合用装置,以及确定超过坐标控制结构的零干预。这消除了硬件分割造成的间接费用,但意味着某些硬件能力尚未在当代标准系统中完全实施。为了解决这类硬件限制,可定制和可变的RIRC-V指令设置架构提供了迅速、不受限制的修改的可能性。我们提出了关于目前RISC-V规格及其实施的结论,这些结论要求采取超过宽控制结构的干预措施。我们发现了许多不利于实现我们实现零干预目标的问题,分别为:设计级别,特别是处理中断结果,我们如何改进了RISC结构。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
15+阅读 · 2020年2月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员