Automatic segmentation of ground glass opacities and consolidations in chest computer tomography (CT) scans can potentially ease the burden of radiologists during times of high resource utilisation. However, deep learning models are not trusted in the clinical routine due to failing silently on out-of-distribution (OOD) data. We propose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space and seamlessly integrates into state-of-the-art segmentation pipelines. The simple approach can even augment pre-trained models with clinically relevant uncertainty quantification. We validate our method across four chest CT distribution shifts and two magnetic resonance imaging applications, namely segmentation of the hippocampus and the prostate. Our results show that the proposed method effectively detects far- and near-OOD samples across all explored scenarios.
翻译:在高资源利用期间,对地面玻璃的偏差和胸部计算机断层扫描中的整形进行自动分解和整合,可能会减轻放射学家的负担;然而,深学习模型在临床常规中并不可信,因为分配外(OOD)数据无法无声地完成。我们建议采用轻量的 OOD 探测方法,利用地物空间中的Mahalanobis距离,无缝地融入最先进的分离管道。这种简单方法甚至可以增加预先培训的模型,对临床相关的不确定性进行量化。我们验证了我们跨越四个胸部的CT分布变化和两个磁共振成像应用的方法,即河马峰和前列腺的分解。我们的结果显示,拟议的方法在所有探索的情景中都有效地检测了远近OOD样本。