In this paper we introduce a new formulation of Bennett's logical depth based on pebble transducers. This notion is defined based on the difference between the minimal length descriptional complexity of prefixes of infinite sequences from the perspective of finite-state transducers and pebble transducers. Our notion of pebble-depth satisfies the three fundamental properties of depth: i.e. easy sequences and random sequences are not deep, and the existence of a slow growth law type result. We also compare pebble-depth to other depth notions based on finite-state transducers, pushdown compressors and the Lempel-Ziv $78$ compression algorithm. We first demonstrate that there exists a normal pebble-deep sequence even though there is no normal finite-state-deep sequence. We then show that there exists a sequence which has pebble-depth level of roughly $1/2$ and Lempel-Ziv-depth level of roughly $0$. Finally we show the existence of a sequence which has a pebble-depth level of roughly $1$ and a pushdown-depth level of roughly $1/2$.
翻译:在本文中,我们引入了一种基于微粒转换器的对贝内特逻辑深度的新配方。 这一概念是根据从有限国家转换器和微粒转换器的角度对无限序列前缀的最小长度描述复杂性之间的差别来定义的。 我们的微粒深度概念满足了深度的三个基本特性: 即简单序列和随机序列不深, 并且存在一种缓慢增长法类型的结果。 我们还将微粒深度概念与其他基于有限国家转换器、 推下压缩器和 柠檬- Ziv 78美元的压缩算法的深度概念作比较。 我们首先表明,即使没有正常的有限状态测序, 也存在正常的微粒深度序列。 我们然后表明, 存在一个深度水平约为1/2美元、 莱姆波- Ziv 深度水平约为0美元的序列。 最后,我们显示了存在一个深度水平约为1美元和大约1/2美元的深度推下方位序列。