We consider federated learning (FL), where the training data is distributed across a large number of clients. The standard optimization method in this setting is Federated Averaging (FedAvg), which performs multiple local first-order optimization steps between communication rounds. In this work, we evaluate the performance of several second-order distributed methods with local steps in the FL setting which promise to have favorable convergence properties. We (i) show that FedAvg performs surprisingly well against its second-order competitors when evaluated under fair metrics (equal amount of local computations)-in contrast to the results of previous work. Based on our numerical study, we propose (ii) a novel variant that uses second-order local information for updates and a global line search to counteract the resulting local specificity.


翻译:我们考虑联合学习(FL),培训数据分布在众多客户中。这种环境下的标准优化方法是Federation Averiging(FedAvg),该方法在沟通周期之间执行多项当地一级优化步骤。在这项工作中,我们评估了在FL设置中若干二级分配方法与当地一级分配方法的性能,这些方法有望具有有利的趋同特性。我们(一)表明,FedAvg在根据公平标准(相等的当地计算)评估其第二级竞争对手时,与以往工作结果相比,其表现令人惊讶。根据我们的数字研究,我们提议(二)一个新变式,利用二级当地信息进行更新,并进行全球线搜索,以抵消由此产生的当地特性。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
46+阅读 · 2019年10月29日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
已删除
将门创投
11+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Arxiv
1+阅读 · 2021年10月25日
Arxiv
1+阅读 · 2021年10月24日
Arxiv
0+阅读 · 2021年10月23日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
3+阅读 · 2020年5月1日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
46+阅读 · 2019年10月29日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
已删除
将门创投
11+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员