Gene gain-loss-duplication models are commonly based on continuous-time birth-death processes. Employed in a phylogenetic context, such models have been increasingly popular in studies of gene content evolution across multiple genomes. While the applications are becoming more varied and demanding, bioinformatics methods for probabilistic inference on copy numbers (or integer-valued evolutionary characters, in general) are scarce. We describe a flexible probabilistic framework for phylogenetic gene-loss-duplication models. The framework is based on a novel elementary representation by dependent random variables with well-characterized conditional distributions: binomial, P\'olya (negative binomial), and Poisson. The corresponding graphical model yields exact numerical procedures for computing the likelihood and the posterior distribution of ancestral copy numbers. The resulting algorithms take quadratic time in the total number of copies. In addition, we show how the likelihood gradient can be computed by a linear-time algorithm.


翻译:基因增益-增益-增益模型通常基于持续时间的出生-死亡过程。 在多种基因组的基因内容演变研究中,这种模型越来越受人欢迎。虽然这些应用越来越多样化和要求更高,但复制数字(或一般而言的全值进化字符)的概率推论方法很少。我们描述的是植物遗传基因损耗-多变模型的灵活概率框架。这个框架基于一种新颖的基本表现,即依赖的随机变量,其功能性强的有条件分布为:binomial、P\'olya(负二元和Poisson)。相应的图形模型得出了计算祖传复制数字的可能性和后传分布的精确数字程序。由此产生的算法在总拷贝数中需要四倍的时间。此外,我们展示了如何用线性算法来计算梯度的可能性。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月22日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员