Image-based characterization and disease understanding involve integrative analysis of morphological, spatial, and topological information across biological scales. The development of graph convolutional networks (GCNs) has created the opportunity to address this information complexity via graph-driven architectures, since GCNs can perform feature aggregation, interaction, and reasoning with remarkable flexibility and efficiency. These GCNs capabilities have spawned a new wave of research in medical imaging analysis with the overarching goal of improving quantitative disease understanding, monitoring, and diagnosis. Yet daunting challenges remain for designing the important image-to-graph transformation for multi-modality medical imaging and gaining insights into model interpretation and enhanced clinical decision support. In this review, we present recent GCNs developments in the context of medical image analysis including imaging data from radiology and histopathology. We discuss the fast-growing use of graph network architectures in medical image analysis to improve disease diagnosis and patient outcomes in clinical practice. To foster cross-disciplinary research, we present GCNs technical advancements, emerging medical applications, identify common challenges in the use of image-based GCNs and their extensions in model interpretation, large-scale benchmarks that promise to transform the scope of medical image studies and related graph-driven medical research.
翻译:以图像为基础的定性和疾病理解涉及对生物规模的形态、空间和地形信息的综合分析; 图形革命网络(GCNs)的开发创造了机会,通过图形驱动的结构处理这种信息复杂性,因为GCNs能够以极大的灵活性和效率进行特征汇总、互动和推理; 这些GCNs的能力催生了医学成像分析方面的新的研究浪潮,其首要目标是改善对疾病的定量了解、监测和诊断; 然而,在设计多模式医学成像的重要成像到成像转换图象转换以及获得对模型解释的洞察和强化临床决策支持方面,仍然存在巨大的挑战; 在本次审查中,我们介绍了医学成像分析方面的最新GCNs发展情况,包括放射学和病理病理学的成象数据; 我们讨论了在医学成象分析中迅速增加使用图形网络结构,以改进临床实践中的疾病诊断和病人结果; 为了促进跨学科研究,我们介绍了GCNs技术进展、新出现的医疗应用,确定在使用基于图像的GCNs及其在模型解释中的扩展方面的共同挑战,以及医学研究的大规模基准,以改变医学图象学研究的范围。