Contrastive learning is a key technique of modern self-supervised learning. The broader accessibility of earlier approaches is hindered by the need of heavy computational resources (e.g., at least 8 GPUs or 32 TPU cores), which accommodate for large-scale negative samples or momentum. The more recent SimSiam approach addresses such key limitations via stop-gradient without momentum encoders. In medical image analysis, multiple instances can be achieved from the same patient or tissue. Inspired by these advances, we propose a simple triplet representation learning (SimTriplet) approach on pathological images. The contribution of the paper is three-fold: (1) The proposed SimTriplet method takes advantage of the multi-view nature of medical images beyond self-augmentation; (2) The method maximizes both intra-sample and inter-sample similarities via triplets from positive pairs, without using negative samples; and (3) The recent mix precision training is employed to advance the training by only using a single GPU with 16GB memory. By learning from 79,000 unlabeled pathological patch images, SimTriplet achieved 10.58% better performance compared with supervised learning. It also achieved 2.13% better performance compared with SimSiam. Our proposed SimTriplet can achieve decent performance using only 1% labeled data. The code and data are available at https://github.com/hrlblab/SimTriple.
翻译:相对学习是现代自我监督学习的关键技术。 早期方法的更广泛可获取性受到大量计算资源的需要( 例如至少8个GPU或32个TPU核心)的阻碍, 需要大量计算资源( 例如, 至少8个GPU或32个TPU核心), 以适应大规模负面样本或动力。 较近的SimSiam 方法通过不使用负面样本而停止升级, 解决这些关键限制。 在医学图像分析中, 可以从同一个病人或组织获得多个实例。 受这些进步的启发, 我们提议在病理图像上采用简单的三重代表学习( SimTriplet) 方法。 论文的贡献有三重:(1) 拟议的SimTriplet 方法利用医学图像的多视性质,而不是自我校验; (2) 这种方法通过使用正对配方的三重体来最大限度地利用表内和相之间的相似性能; (3) 最近的混合精确培训用于推进培训, 仅使用带有16GB记忆的单一 GPUU。 通过学习79000个未标记的病理学补版图像图像图像图象图象图像, SimT 也通过学习了更好的业绩, 。 在Simrp 2 比较Simrimrimrimrimrimrma 2 中可以取得更好的业绩。