We introduce a representation learning framework for spatial trajectories. We represent partial observations of trajectories as probability distributions in a learned latent space, which characterize the uncertainty about unobserved parts of the trajectory. Our framework allows us to obtain samples from a trajectory for any continuous point in time, both interpolating and extrapolating. Our flexible approach supports directly modifying specific attributes of a trajectory, such as its pace, as well as combining different partial observations into single representations. Experiments show our method's advantage over baselines in prediction tasks.
翻译:我们为空间轨迹引入了一个代表式学习框架。我们代表了对轨道的局部观测,作为学习到的潜在空间的概率分布,这说明轨道中未观测到的部分的不确定性。我们的框架允许我们从任何连续的时点从轨道上获取样本,包括内插和外推。我们灵活的方法支持直接改变轨迹的具体属性,例如速度,以及将不同部分观测合并为单一的表达方式。实验表明,我们的方法在预测任务中比基线有优势。