How should one leverage historical data when past observations are not perfectly indicative of the future, e.g., due to the presence of unobserved confounders which one cannot "correct" for? Motivated by this question, we study a data-driven decision-making framework in which historical samples are generated from unknown and different distributions assumed to lie in a heterogeneity ball with known radius and centered around the (also) unknown future (out-of-sample) distribution on which the performance of a decision will be evaluated. This work aims at analyzing the performance of central data-driven policies but also near-optimal ones in these heterogeneous environments. We first establish, for a general class of policies, a new connection between data-driven decision-making and distributionally robust optimization with a regret objective. We then leverage this connection to quantify the performance that is achievable by Sample Average Approximation (SAA) as a function of the radius of the heterogeneity ball: for any integral probability metric, we derive bounds depending on the approximation parameter, a notion which quantifies how the interplay between the heterogeneity and the problem structure impacts the performance of SAA. When SAA is not rate-optimal, we design and analyze problem-dependent policies achieving rate-optimality. We compare achievable guarantees for three widely-studied problems -- newsvendor, pricing, and ski rental -- under heterogeneous environments. Our work shows that the type of achievable performance varies considerably across different combinations of problem classes and notions of heterogeneity.
翻译:当过去的观测并不完全显示未来时,例如,由于存在未观察到的无法“纠正”的困惑者,我们应如何利用历史数据,例如,由于存在无法“纠正”的问题,我们应如何利用历史数据数据数据数据数据?我们研究一个数据驱动的决策框架,在这个框架中,由未知的和不同的分布生成历史样本,假设这些样本位于已知半径的异质球中,并围绕(以及)未知的未来(非抽样)分布,将评估某项决定的执行情况。这项工作的目的是分析中央数据驱动的政策的绩效,但在这些复杂环境中,分析接近最佳的政策绩效。我们首先为一般政策类别,在数据驱动的决策和分布稳健优化之间建立一种新的联系,并有一个令人遗憾的目标。然后我们利用这一联系来量化通过样本平均匹配(以及非抽样)未来(以及)未知的未来分布所能够实现的绩效。对于任何整体概率衡量,我们根据近似的参数,我们从一个概念中分辨出一个概念,用以测量不同类型(当我们的工作偏差率水平下)和可变性政策之间的相互作用,而我们无法大量地分析设计问题。