The \emph{strong collapse} of a simplicial complex, proposed by Barmak and Minian (\emph{Disc. Comp. Geom. 2012}), is a combinatorial collapse of a complex onto its sub-complex. Recently, it has received attention from computational topology researchers, owing to its empirically observed usefulness in simplification and size-reduction of the size of simplicial complexes while preserving the homotopy class. We consider the strong collapse process on random simplicial complexes. For the Erd\H{o}s-R\'enyi random clique complex $X(n,c/n)$ on $n$ vertices with edge probability $c/n$ with $c>1$, we show that after any maximal sequence of strong collapses the remaining subcomplex, or \emph{core} must have $(1-\gamma)(1-c\gamma) n+o(n)$ vertices asymptotically almost surely (a.a.s.), where $\gamma$ is the least non-negative fixed point of the function $f(x) = \exp\left(-c(1-x)\right)$ in the range $(0,1)$. These are the first theoretical results proved for strong collapses on random (or non-random) simplicial complexes.
翻译:由 Barmak 和 Minian (\ emph{ Disc. comp. Geom. 2012}) 提议的一个简化综合体的 \ emph{ 坚固的崩溃 。 由 Barmak 和 Minian (\ emph{ Disc. gem. gem. 2012}) 提出, 是一个综合体的组合性崩溃, 将是一个综合体的组合性崩溃, 放到其子复合体上。 最近, 它得到了计算表层研究人员的注意, 因为它在简化和缩小模拟综合体的大小的同时, 保存同质级。 我们认为随机简化综合体的强烈崩溃过程很强烈。 对于 Explical- complical Complical Complical $X (n) comptical- nual $0, c/ nc/ gmamam= leglemental $.