Consider a class of simplices defined by systems $A x \leq b$ of linear inequalities with $\Delta$-modular matrices. A matrix is called $\Delta$-modular, if all its rank-order sub-determinants are bounded by $\Delta$ in an absolute value. In our work we call a simplex $\Delta$-modular, if it can be defined by a system $A x \leq b$ with a $\Delta$-modular matrix $A$. And we call a simplex empty, if it contains no points with integer coordinates. In literature, a simplex is called lattice-simplex, if all its vertices have integer coordinates. And a lattice-simplex called empty, if it contains no points with integer coordinates excluding its vertices. Recently, assuming that $\Delta$ is fixed, it was shown that the number of $\Delta$-modular empty simplices modulo the unimodular equivalence relation is bounded by a polynomial on dimension. We show that the analogous fact holds for the class of $\Delta$-modular empty lattice-simplices. As the main result, assuming again that the value of the parameter $\Delta$ is fixed, we show that all unimodular equivalence classes of simplices of the both types can be enumerated by a polynomial-time algorithm. As the secondary result, we show the existence of a polynomial-time algorithm for the problem to check the unimodular equivalence relation for a given pair of $\Delta$-modular, not necessarily empty, simplices.


翻译:考虑由系统 $A x\leq b$ 定义的线性不平等类别 $A x\leq b$, $Delta$ 模式矩阵。 如果所有级级级子确定性子确定性子确定性都以绝对值 $\ Delta$为约束, 矩阵称为 $Delta$- 模式。 在我们的工作中, 如果系统定义为$A x\leq b$, 以美元为标准值。 我们称简单x为空, 如果它没有整数型坐标。 在文献中, 简单x称为 lattice- sloadal 模式, 如果所有级子级子分级都有整数。 如果它没有包含整数的点($Delta$-modq 模式), 则称为空。 最近, 假设 $Delta 美元是固定值的, 美元- modalalal 标准值的数值以美元- wemodol 标准值为标准, ASimal- millal 格式显示一个空值的Siltial- dal- salal- saltial- sloloupal- slupal slupal 显示一个空值。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月21日
Arxiv
0+阅读 · 2023年4月19日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员