In this paper we establish a mathematically rigorous connection between Causal inference (C-inf) and the low-rank recovery (LRR). Using Random Duality Theory (RDT) concepts developed in [46,48,50] and novel mathematical strategies related to free probability theory, we obtain the exact explicit typical (and achievable) worst case phase transitions (PT). These PT precisely separate scenarios where causal inference via LRR is possible from those where it is not. We supplement our mathematical analysis with numerical experiments that confirm the theoretical predictions of PT phenomena, and further show that the two closely match for fairly small sample sizes. We obtain simple closed form representations for the resulting PTs, which highlight direct relations between the low rankness of the target C-inf matrix and the time of the treatment. Hence, our results can be used to determine the range of C-inf's typical applicability.
翻译:在本文中,我们建立了从数学上严格连接因果关系(C-inf)和低级恢复(LRR)之间的数学严格联系。 使用在[46,48,50] 中制定的随机质量理论(RDT)概念和与自由概率理论有关的新型数学战略,我们获得了精确的典型(和可实现的)最坏案例阶段过渡(PT ) 。 这些PT精确地区分了可能通过LRR产生因果推论的情景和无法通过LRR推论的情景。 我们用数字实验来补充我们的数学分析,以证实对PT现象的理论预测,并进一步表明这两种现象与相当小的样本大小非常吻合。 我们获得了由此产生的PT的简单封闭式陈述,这些陈述强调了目标C-inf矩阵的低级与治疗时间之间的直接关系。 因此,我们的结果可以用来确定C-inf的典型应用范围。