Effectively predicting molecular interactions has the potential to accelerate molecular dynamics by multiple orders of magnitude and thus revolutionize chemical simulations. Graph neural networks (GNNs) have recently shown great successes for this task, overtaking classical methods based on fixed molecular kernels. However, they still appear very limited from a theoretical perspective, since regular GNNs cannot distinguish certain types of graphs. In this work we close this gap between theory and practice. We show that GNNs with directed edge embeddings and two-hop message passing are indeed universal approximators for predictions that are invariant to global rotation and translation, and equivariant to permutation. We then leverage these insights and multiple structural improvements to propose the geometric message passing neural network (GemNet). We demonstrate the benefits of the proposed changes in multiple ablation studies. GemNet outperforms previous models on the COLL and MD17 molecular dynamics datasets by 34% and 40%, performing especially well on the most challenging molecules.


翻译:有效预测分子相互作用有可能通过多个数量级加速分子动态,从而实现化学模拟的革命性。 图形神经网络(GNNS)最近为这项任务展示了巨大的成功,超过基于固定分子内核的经典方法。 但是,从理论角度看,这些网络似乎仍然非常有限,因为普通的GNNS无法区分某些类型的图形。 在这项工作中,我们缩小了理论和实践之间的差距。 我们显示,带有定向边缘嵌入和双跳信息传递的GNNs确实是全球旋转和翻译变异预测的通用近似器,以及变异的等同器。 然后我们利用这些洞见和多重结构改进来提出几何信息传递神经网络(GemNet ) 。 我们展示了多重熔化研究中拟议变化的好处。 GemNet将COLL和MD17分子动态数据集的先前模型比34%和40%的模型要好,对最具挑战的分子特别好。

1
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
15+阅读 · 2020年2月5日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
Arxiv
6+阅读 · 2019年9月25日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
图表示学习Graph Embedding综述
AINLP
33+阅读 · 2020年5月17日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
15+阅读 · 2020年2月5日
Hyperbolic Graph Attention Network
Arxiv
6+阅读 · 2019年12月6日
Arxiv
6+阅读 · 2019年9月25日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
Arxiv
23+阅读 · 2018年10月1日
Top
微信扫码咨询专知VIP会员