If p is a prime, then the numbers 1, 2, ..., p-1 form a group under multiplication modulo p. A number g that generates this group is called a primitive root of p; i.e., g is such that every number between 1 and p-1 can be written as a power of g modulo p. Building on prior work in the ACL2 community, this paper describes a constructive proof that every prime number has a primitive root.
翻译:如果p是质数,那么数字 1, 2,..., p-1 在乘数模式 p. 下组成一个组。 生成该组的数 g 被称为 p 的原始根; 即, g 表示在 1 和 p 1 之间的每一个数都可以写成为 g modulo p 的力量。 以ACL2 社区先前的工作为基础,本文描述了一个建设性的证据, 证明每个质数都有原始根。