Recently, Foursquare released a global dataset with more than 100 million points of interest (POIs), each representing a real-world business on its platform. However, many entries lack complete metadata such as addresses or categories, and some correspond to non-existent or fictional locations. In contrast, OpenStreetMap (OSM) offers a rich, user-contributed POI dataset with detailed and frequently updated metadata, though it does not formally verify whether a POI represents an actual business. In this data paper, we present a methodology that integrates the strengths of both datasets: Foursquare as a comprehensive baseline of commercial POIs and OSM as a source of enriched metadata. The combined dataset totals approximately 1 TB. While this full version is not publicly released, we provide filtered releases with adjustable thresholds that reduce storage needs and make the data practical to download and use across domains. We also provide step-by-step instructions to reproduce the full 631 GB build. Record linkage is achieved by computing name similarity scores and spatial distances between Foursquare and OSM POIs. These measures identify and retain high-confidence matches that correspond to real businesses in Foursquare, have representations in OSM, and show strong name similarity. Finally, we use this filtered dataset to construct a graph-based representation of POIs enriched with attributes from both sources, enabling advanced spatial analyses and a range of downstream applications.
翻译:暂无翻译