We study the machine learning problem of generalization when quantum operations are used to classify either classical data or quantum channels, where in both cases the task is to learn from data how to assign a certain class $c$ to inputs $x$ via measurements on a quantum state $\rho(x)$. A trained quantum model generalizes when it is able to predict the correct class for previously unseen data. We show that the accuracy and generalization capability of quantum classifiers depend on the (R\'enyi) mutual informations $I(C{:}Q)$ and $I_2(X{:}Q)$ between the quantum embedding $Q$ and the classical input space $X$ or class space $C$. Based on the above characterization, we then show how different properties of $Q$ affect classification accuracy and generalization, such as the dimension of the Hilbert space, the amount of noise, and the amount of neglected information via, e.g., pooling layers. Moreover, we introduce a quantum version of the Information Bottleneck principle that allows us to explore the various tradeoffs between accuracy and generalization.
翻译:当量子操作被用于对古典数据或量子频道进行分类时,我们研究机器学习一般化的问题,在这两种情况下,任务都是从数据中学习如何通过量子状态$\rho(x)$的测量,指定某类美元投入美元x美元。一个经过训练的量子模型在能够预测先前不可见数据的正确等级时,一般化了。我们表明量子分类器的准确性和一般化能力取决于(R\'enyi) 相互信息$(C{{{{{{}})$和$I_2(X{}:{})美元,在这两种情况下,任务都是从数据中学习如何通过量子嵌入Q$和典型输入空间$X美元或等空间$xC$。根据上述特征,我们然后根据美元的不同属性,说明美元的不同属性如何影响分类的准确性和一般化,例如Hilbert空间的尺寸、噪音的数量和被忽略的信息量,例如,集合层。此外,我们介绍了信息瓶化原则的量化版,使我们能够探讨准确性和一般化之间的各种权衡。