The non-asymptotic tail bounds of random variables play crucial roles in probability, statistics, and machine learning. Despite much success in developing upper tail bounds in literature, the lower tail bound results are relatively fewer. In this partly expository paper, we introduce systematic and user-friendly schemes for developing non-asymptotic lower tail bounds with elementary proofs. In addition, we develop sharp lower tail bounds for the sum of independent sub-Gaussian and sub-exponential random variables, which matches the classic Hoeffding-type and Bernstein-type concentration inequalities, respectively. We also provide non-asymptotic matching upper and lower tail bounds for a suite of distributions, including gamma, beta, (regular, weighted, and noncentral) chi-squared, binomial, Poisson, Irwin-Hall, etc. We apply the result to establish the matching upper and lower bounds for extreme value expectation of the sum of independent sub-Gaussian and sub-exponential random variables. A statistical application of signal identification from sparse heterogeneous mixtures is finally studied.


翻译:随机变量的非隐性尾线在概率、统计和机器学习方面起着关键作用。尽管在文献中开发上尾线取得了很大成功,但下尾线效果相对较少。在本部分解释性文件中,我们采用系统和方便用户的办法,利用基本证据开发非隐性下尾线;此外,我们开发了与传统的Hoffding型和Bernstein型浓度不平等相匹配的独立亚高低热量随机变量之和的尖锐低尾线。我们还为一组分布型(包括伽马、β、(常规、加权和非中性)、彩色、binomial、Poisson、Irwin-Hall等)提供了非隐性匹配的上下尾线。我们应用这一结果,为独立亚丁型和亚显性随机变量之和极值的极端值设定匹配的上下边线。我们最终研究了从稀异混合混合物中识别信号的统计应用。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
q-Space Novelty Detection with Variational Autoencoders
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员