Many problems in causal inference and economics can be formulated in the framework of conditional moment models, which characterize the target function through a collection of conditional moment restrictions. For nonparametric conditional moment models, efficient estimation has always relied on preimposed conditions on various measures of ill-posedness of the hypothesis space, which are hard to validate when flexible models are used. In this work, we address this issue by proposing a procedure that automatically learns representations with controlled measures of ill-posedness. Our method approximates a linear representation defined by the spectral decomposition of a conditional expectation operator, which can be used for kernelized estimators and is known to facilitate minimax optimal estimation in certain settings. We show this representation can be efficiently estimated from data, and establish L2 consistency for the resulting estimator. We evaluate the proposed method on proximal causal inference tasks, exhibiting promising performance on high-dimensional, semi-synthetic data.
翻译:在有条件时刻模型的框架内,可以提出因果推断和经济学方面的许多问题,这些模型通过收集有条件时刻限制来描述目标功能。对于非参数性有条件时刻模型来说,有效的估计总是依赖假设空间的不正确度量的预先设定条件,在使用灵活度模型时很难验证。在这项工作中,我们通过提出一个程序来解决这一问题,该程序自动学习带有受控的不正确度度量的表示方式。我们的方法接近于一种线性表示方式,即由光谱分解一个有条件期望操作器所定义的线性表示方式,该方式可用于内分解的测算器,并已知可以在某些环境中促进最小型的最佳估计。我们从数据中可以有效地估计这种表示方式,并为由此产生的估计结果确定L2的一致性。我们评估了关于预测性因果关系的推断任务的拟议方法,在高维度、半合成数据上表现出有希望的表现。