Transparent objects are ubiquitous in household settings and pose distinct challenges for visual sensing and perception systems. The optical properties of transparent objects leave conventional 3D sensors alone unreliable for object depth and pose estimation. These challenges are highlighted by the shortage of large-scale RGB-Depth datasets focusing on transparent objects in real-world settings. In this work, we contribute a large-scale real-world RGB-Depth transparent object dataset named ClearPose to serve as a benchmark dataset for segmentation, scene-level depth completion and object-centric pose estimation tasks. The ClearPose dataset contains over 350K labeled real-world RGB-Depth frames and 5M instance annotations covering 63 household objects. The dataset includes object categories commonly used in daily life under various lighting and occluding conditions as well as challenging test scenarios such as cases of occlusion by opaque or translucent objects, non-planar orientations, presence of liquids, etc. We benchmark several state-of-the-art depth completion and object pose estimation deep neural networks on ClearPose. The dataset and benchmarking source code is available at https://github.com/opipari/ClearPose.
翻译:透明天体的光学特性使得常规的三维传感器单靠常规的三维传感器不可靠,无法对物体的深度进行估计。这些挑战突出表现在缺乏侧重于现实世界环境中透明天体的大型 RGB-Depth 数据集。在这项工作中,我们贡献了一个名为ClearPose的大规模真实世界RGB-Depeh 透明天体数据集,作为分离、现场深度完成和以物体为中心的表面估计任务的基准数据集。清晰Pose 数据集包含超过 350K 标记的真实世界 RGB-D 显示框架和 5M 实例说明,覆盖63个家庭天体。数据集包含在各种照明和视觉条件下日常生活中常用的物体类别,以及具有挑战性的试验情景,如不透明或透明天体物体的隔热、非规划方向、液体的存在等。我们在ClearPose/Prose上设定了几个最先进的深度完成和天体显示深度神经网络。数据设置和基准源代码可在 https://gibarip/ https://gibarop.