We introduce a technique for pairwise registration of neural fields that extends classical optimization-based local registration (i.e. ICP) to operate on Neural Radiance Fields (NeRF) -- neural 3D scene representations trained from collections of calibrated images. NeRF does not decompose illumination and color, so to make registration invariant to illumination, we introduce the concept of a ''surface field'' -- a field distilled from a pre-trained NeRF model that measures the likelihood of a point being on the surface of an object. We then cast nerf2nerf registration as a robust optimization that iteratively seeks a rigid transformation that aligns the surface fields of the two scenes. We evaluate the effectiveness of our technique by introducing a dataset of pre-trained NeRF scenes -- our synthetic scenes enable quantitative evaluations and comparisons to classical registration techniques, while our real scenes demonstrate the validity of our technique in real-world scenarios. Additional results available at: https://nerf2nerf.github.io
翻译:我们引入了对神经场进行双向登记的技术,该技术扩展了传统优化当地注册(即比较方案),以在神经辐射场(NERF)上运作 -- -- 神经3D场演示,从校准图像的收集中培训出来。 NERF不分解照明和颜色,因此使登记成为无差异的照明,我们引入了“地表场”的概念 -- -- 从经过预先训练的NERF模型中提取的字段,用来测量物体表面某一点的可能性。我们随后将Nerf2nerf登记作为一种强健的优化进行,以迭接方式寻求一种僵硬的转化,使两场的表面一致。我们通过引入预先训练的NERF场数据集来评估我们的技术的有效性,我们的合成场能够对古典登记技术进行定量评估和比较,而我们的真实场展示了我们技术在现实世界情景中的有效性。其他结果见:https://nerfnerf.github。