Accurate segmentation of mandibular canals in lower jaws is important in dental implantology. Medical experts determine the implant position and dimensions manually from 3D CT images to avoid damaging the mandibular nerve inside the canal. In this paper, we propose a novel dual-stage deep learning-based scheme for the automatic segmentation of the mandibular canal. Particularly, we first enhance the CBCT scans by employing the novel histogram-based dynamic windowing scheme, which improves the visibility of mandibular canals. After enhancement, we design 3D deeply supervised attention U-Net architecture for localizing the volumes of interest (VOIs), which contain the mandibular canals (i.e., left and right canals). Finally, we employed the multi-scale input residual U-Net architecture (MS-R-UNet) to segment the mandibular canals using VOIs accurately. The proposed method has been rigorously evaluated on 500 scans. The results demonstrate that our technique outperforms the current state-of-the-art segmentation performance and robustness methods.
翻译:在牙科植入学中,对下下下巴的两栖运河进行精确的分解很重要。 医学专家从 3D CT 图像中手动确定植入位置和尺寸, 以避免损害运河内的人脑神经。 在本文中, 我们提出一个新的双阶段深学习计划, 以自动分解曼底巴运河。 特别是, 我们首先使用新型的基于直观的动态窗口计划, 提高人脑运河的能见度, 以此加强CBCT 扫描。 经过强化, 我们设计了 3D 深度监控的U- 网络结构, 用于将兴趣量( VOIs) 本地化, 其中包含人脑运河( 即, 左侧和右侧运河) 。 最后, 我们使用多级输入剩余U- Net 结构( MS- R- UNet) 来分解曼底巴运河。 在500 扫描中, 对拟议方法进行了严格评价。 结果表明, 我们的技术超过了当前状态的分解性及稳度方法。