项目名称: 基于组合Hodge理论的图像视频质量评价方法
项目编号: No.61402019
项目类型: 青年科学基金项目
立项/批准年度: 2015
项目学科: 计算机科学学科
项目作者: 许倩倩
作者单位: 北京大学
项目金额: 10万元
中文摘要: 图像视频质量评价是多媒体分析领域的核心研究之一,其在采集、显示、存储、传输、压缩等领域都发挥着重要作用。由于传统实验室环境下的主观测试代价昂贵,网络众包因其具有成本低、参与人员广泛、数据量大等优点,提供了大数据时代下通过群体来完成主观评测的新途径。鉴于此,本项目采用网络众包收集比对数据,考虑到比对测试法存在样本组合数据量过大的问题,本项目从基于随机图的采样方法入手,利用拓扑约束得到采样率的下界,并在此基础上研究稀疏采样条件下随机采样和主动采样的性能差异。考虑到网络众包收集的数据具有不完全、不均衡、在线收集的特点,本项目引入几何拓扑学中的组合Hodge理论构建重建被测函数,并在此基础上发展在线、快速的评价方法,为网络众包实验中遇到的动态序列数据提供高效的处理手段。此外,考虑到测试者是在无监督环境下进行测试,数据质量有很大的不确定性,本项目提出基于Huber-LASSO的去除异常样本的方法。
中文关键词: 网络众包;随机图;代数连通性;在线;异常样本检测
英文摘要: Image/video quality assessment lies in the core topics in multimedia analysis community, and plays an important role in a broad range of applications, e.g. collection, display, storage, transmission, compression, etc. With the advent of ubiquitous Internet access, crowdsourcing strategy provides us a new opportunity to conduct user studies from an Internet crowd in Big Data era. Since such a crowd can be quite large, crowdsourcing enables researchers to conduct experiments with a more diverse set of participants at a lower economic cost than would be impossible under laboratory conditions. Among various subjective measures, paired comparison method is expected to yield more reliable results and thus a desired approach to collect crowd data via Internet. However, paired comparison leaves a heavier burden on participants with a larger number of comparisons. Therefore, we exploit a randomized sampling scheme based on random graph theory where small subsets of all possible pairs are randomly chosen for each assessor to view. Equipped with recent developments in random complex theory, we further derive the constraints on sampling complexity (i.e., O(nlogn) distinct random edges are necessary to ensure the inference of a global ranking and O(n^2/3) distinct random edges are sufficient to remove the global inconsistenc
英文关键词: Crowdsourcing;random graph;algebraic connectivity;online;outlier detection