项目名称: 高性能大肠杆菌光控基因表达技术

项目编号: No.31470833

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 心理学

项目作者: 杨弋

作者单位: 华东理工大学

项目金额: 90万元

中文摘要: 原核细胞特别是大肠杆菌的诱导表达系统是目前最为广泛应用的基因表达系统,对生命科学研究与生物制造具有重要的意义。然而现有的化学诱导或温度诱导的大肠杆菌基因表达系统仍然存在一定的不足,难以在时间和空间上迅速可逆地控制蛋白质的表达,也难以对蛋白质表达的水平进行精密的量的调控。本研究拟基于合成生物学原理, 针对大肠杆菌设计光可控的阻遏蛋白或光可控的反转录终止因子,并进一步建立低背景、高诱导、低毒性,快速激活,高度可逆以及容易操纵的实用高性能光控基因表达系统,在大肠杆菌细胞上实现对功能基因表达的时间、空间双重精确控制。将探索利用这一技术控制运动、裂解等细胞功能,在生物反应器中诱导具有经济意义的蛋白质表达,以及利用基因改造的光敏大肠杆菌攻击肿瘤。这些光遗传学技术不仅将可为对微生物学、合成生物学等生命科学基础研究提供丰富有力工具,还可广泛用于生物制造与前沿医学领域。

中文关键词: 细菌;基因表达;光遗传学;原核细胞;合成生物学

英文摘要: Inducible gene expression systems in prokaryotic cells, especially E. coli., are mostly widely used in not only basic research but also bio-manufacturing; however, most current chemical inducible or temperature sensitive gene expression systems have limitations such as incapable to spatiotemporally and rapidly control protein expression in single cells, or to fine tune protein expression level accurately. Herein we aim to develop synthetic light sensitive repressors or anti-terminators, and further establish single-component light switchable gene expression in E. coli, with high induction, low background, rapid activation and reversibility, which allows us to control gene expression in bacteria cells with high spatiotemporal resolution. We will further apply this systems to control biological functions such as cell movement, cell lysis, regulate production of valuable proteins in bioreactor, and guide light sensitive bacteria to attack tumors in animal model. We anticipate that the light switchable systems developed in this project will be widely used in many fields of life science research and biotechnology, including microbiology, synthetic biology, biomanufacturing and advanced medicine.

英文关键词: bacteria;gene expression;optogenetics;prokaryotic cell;synthetic biology

成为VIP会员查看完整内容
0

相关内容

ICLR2022 | OntoProtein:融入基因本体知识的蛋白质预训练
专知会员服务
28+阅读 · 2022年2月20日
多模态情绪识别研究综述
专知会员服务
165+阅读 · 2020年12月21日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
图神经网络表达能力的研究综述,41页pdf
专知会员服务
169+阅读 · 2020年3月10日
把DNA换成RNA,有望创造强大、可持续的生物计算机
大数据文摘
0+阅读 · 2022年3月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员