项目名称: 延迟和分数阶微分代数系统的迭代方法及应用

项目编号: No.11301448

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 刘红良

作者单位: 湘潭大学

项目金额: 22万元

中文摘要: 延迟微分代数系统或分数阶(延迟)微分代数系统常用来描述具有时滞效应、记忆性及约束限制等特征的科学工程问题。本项目重点研究这两类系统的迭代求解方法的理论和相应高效算法的构造、实现及应用。具体内容包括:(1) 探索求解延迟微分代数系统(特别是高指标问题)和分数阶(延迟)微分代数系统的波形松弛法、变分迭代法的收敛理论;(2) 针对大规模整数阶和分数阶(延迟)微分代数系统,以分裂和并行计算为关键技术,引入多重网格快速算法,构造高效波形松弛法;(3) 针对整数阶高指标延迟微分代数系统和分数阶延迟微分代数系统,研究限制变分理论,构造高效变分迭代法;(4) 将所获部分理论结果和高效算法应用于大规模集成电路的时域分析等领域的数值模拟。本项目研究成果旨在促进延迟和分数阶(延迟)微分代数系统数值方法的发展,并应用于电力系统、自动控制和生物学等科学工程领域。

中文关键词: 微分代数方程;分数阶;波形松弛法;变分迭代法;收敛性

英文摘要: Delay differential-algebraic systems and fractional order (delay) differential-algebraic systems are often used for modeling many practical problems in science and engineering, owning time lag, memory, constraint limit, etc. This project focuses on studying the theory of high efficient iterative algorithms for solving integer order and fractional order (delay) differential-algebraic systems as well as the construction, realization and the application of high efficient iterative algorithms. Detailed contents of this project include the following four parts: (1) developing the convergence theory of waveform relaxation method and variational iteration method for solving delay differential-algebraic systems (especially high-index problems) and fractional order (delay) differential- algebraic systems; (2) constructing the efficient waveform relaxation method based on the multiple grid technology, the technologies of splitting and parallel computing for large scale integer order and fractional order (delay) differential-algebraic systems; (3) studying the restrictive variational theory and constructing efficient variational iteration method for the high-index integer order and fractional order delay differential-algebraic systems; (4) seeking for application of the obtained theoretical results and efficient algorithms

英文关键词: differential-algebraic equation;fractional order;waveform relaxation method;variational iteration method;convergence

成为VIP会员查看完整内容
0

相关内容

【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
33+阅读 · 2021年7月17日
专知会员服务
15+阅读 · 2021年3月4日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
专知会员服务
65+阅读 · 2021年1月28日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
软件多缺陷定位方法研究综述
专知
1+阅读 · 2022年1月25日
【博士论文】分形计算系统
专知
2+阅读 · 2021年12月9日
【WWW2021】双曲图卷积网络的协同过滤
专知
4+阅读 · 2021年3月26日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
19+阅读 · 2018年6月27日
小贴士
相关VIP内容
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
33+阅读 · 2021年7月17日
专知会员服务
15+阅读 · 2021年3月4日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
专知会员服务
65+阅读 · 2021年1月28日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员